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Abstract
In this paper, we analyze the scaling behavior of a diffusion-limited aggregation (DLA)
simulated by the Hastings–Levitov method. We obtain the fractal dimension of the clusters by
direct analysis of the geometrical patterns, in good agreement with one obtained from an
analytical approach. We compute the two-point density correlation function and we show that,
in the large-size limit, it agrees with the obtained fractal dimension. These support the statistical
agreement between the patterns and DLA clusters. We also investigate the scaling properties of
various length scales and their fluctuations, related to the boundary of the cluster. We find that
all of the length scales do not have a simple scaling with the same correction to scaling
exponent. The fractal dimension of the perimeter is obtained equal to that of the cluster. The
growth exponent is computed from the evolution of the interface width equal to β = 0.557(2).
We also show that the perimeter of the DLA cluster has an asymptotic multiscaling behavior.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Diffusion-limited aggregation (DLA), introduced by Witten
and Sander [1], has been shown to describe many
pattern forming processes including dielectric breakdown [2],
electrochemical deposition [3, 4], viscous fingering and
Laplacian flow [5] etc.

This model begins with fixing a seed particle at the center
of coordinates in d dimensions. By releasing random walkers
from infinity and allowing them to stick as soon as they touch
the cluster, a fractal pattern grows.

This procedure is equivalent to solving Laplace’s equation
outside the aggregated cluster with appropriate boundary
conditions. The walker sticks to a point on the surface of
the aggregate with a probability proportional to the local field
strength at that point (the harmonic measure).

In two dimensions, since analytic functions automatically
obey Laplace’s equation, the theory of conformal mappings
provides another mechanism for producing the shapes. This

method has been directly used by Hastings and Levitov (HL)
to study DLA [6]. These authors showed that DLA in
two dimensions can be grown by using successive iterating
stochastic conformal maps. In the present paper, we are
interested in these off-lattice DLA patterns generated by this
method.

We present some evidence that the patterns generated
by the HL method have the same statistics as DLA clusters
simulated according to the original definition. In the first
part of this paper, we calculate the fractal dimension of the
cluster patterns by direct measurements. We use two different
methods, first, using the scaling relation between the average
gyration radius of the generated patterns with their size, and the
second, calculating the density two-point correlation function.
We show that the results agree with the fractal dimension of
DLA clusters.

In the second part of this paper, we investigate the scaling
properties of various length scales and their fluctuations,
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related to the boundary of the patterns. We examine whether
they follow a simple scaling relation with the same correction
to scaling exponent, or their scaling behavior is governed by
the multiscaling property.

The multiscaling of DLA clusters, proposed by Coniglio
and Zannetti [7], stands for space-dependent fractal dimension
according to which a whole set of scaling exponents exists.
It has been also claimed by Somfai et al [8–10] that these
scaling claims are misled by finite size transients, and DLA
obeys simple scaling and all length scales scale with the same
fractal dimension.

However, our simulation for clusters generated by the
HL method, shows that the growth exponent defined by the
interface width differs from the fractal dimension and we
find no correction to scaling exponent for it. Furthermore,
we extend the concept of multiscaling to the boundary of
the clusters and we find that the asymptotic behavior of the
boundary also agrees with the multiscaling property.

2. The Hastings–Levitov method

In the quasi-stationary approximation, the probability density
of finding a particle satisfies the Laplace equation:

∇2ψ(z) = 0, (1)

with boundary conditions:

ψ(z) =
⎧
⎨

⎩

0 z ∈ ∂C
1

2π
ln |z| |z| → ∞,

(2)

where the zero boundary condition on the boundary of cluster
∂C implies the sticking of the particle upon arrival and the latter
condition states that ψ(z) is independent of any direction at
infinity.

The probability of cluster growth at a certain point z of the
boundary of the cluster is determined by the harmonic measure

dP(z) = |∇ψ(z)|dl, (3)

where dl is a boundary element containing the point z.
According to the Riemann mapping theorem, there exists

a conformal map that maps the exterior of the unit circle to
the exterior of the cluster. Hastings and Levitov constructed
this map using the iteration of conformal mapping [6]. The
function φλ,θ (w) maps the unit circle to a circle with a bump
of linear size

√
λ at the point w = eiθ :

φλ,0(w) = w1−a

{
1 + λ

2w
(1 +w)

×
[

1 + w + w

(

1 + 1

w2
− 2

w

1 − λ

1 + λ

) 1
2
]

− 1

}a

, (4)

φλ,θ (w) = eiθφλ,0(e
−iθw). (5)

The parameter 0 � a � 1 determines the shape of the
bump: for higher a the bump becomes elongated in the normal
direction to ∂C, e.g. it is a line segment for a = 1. In this paper
we set a = 1

2 for which the bump has a semi-circular shape.

Figure 1. A circle in the w plane is mapped to a Cn in the z plane by
	n(w). The same function maps a circle with a bump at θn+1 to a
Cn+1.

A cluster Cn consisting of n bumps can be obtained by
using the following map on a unit circle:

	n(w) = φλ1,θ1 ◦ φλ2,θ2 ◦ · · · ◦ φλn ,θn(w), (6)

which corresponds to the following recursive relation for a
cluster Cn+1 (see figure 1):

	n+1(w) = 	n(φλn+1,θn+1(w)). (7)

Since z = 	n(w), one can obtain that

dl = |	′
n(e

iθ )|dθ, (8)

where the prime denotes differentiation.
In order to have fixed-size bumps on the boundary of the

cluster, since the linear dimension at point w is proportional to
|	′

n(w)|−1, one obtains

λn+1 = λ0

|	′
n(e

iθn+1)|2 . (9)

From equations (2) and (8) it can be obtained that

dP = |∇ψ||	′|dθ = dθ, (10)

indicating that the numbers θn have a uniform distribution in
the interval 0 � θ � 2π .

In this paper our analysis is based on the boundary of the
clusters and we need to have uniform data on the boundary.
This can be done formally by using a uniform series of
{βs}S

s=1 during the conformal mapping from a unit circle to
the boundary of the cluster, i.e. {ws = eiβs }S

s=1. This
procedure cannot be applied operationally, because in order to
have reasonable data in the fjords, one has to set S 	 n which
needs very long simulation time.

Barra et al [11] have focused on the branch points of the
map and introduced another approach for selecting the series
{βs}. Following their approach, we definewR

n andwL
n as ‘right’
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and ‘left’ branch points of the function φλn,θn in the following
map, respectively:

eiαR,L
n = φλn,θn (w

R,L
n ), (11)

where |αR
n − αL

n |/2π is the fraction of the unit circle covered
by the bump. Each new bump creates two new branch points
on the boundary and in the case of probable overlapping with a
previous branch point, some of the older ones will be removed.
So the maximum number of branch points will be 2n. If wR,L

k
is a branch point of the kth bump without overlapping by the
next (n − k) bumps, it would be an exposed branch point of the
map	n but the pre-image of the branch point on the unit circle
will change from w

R,L
k to wR,L

k,n :

	k(w
R,L
k ) = 	n(w

R,L
k,n ), (12)

such that

w
R,L
k,n = φ−1

λn,θn
◦ · · · ◦ φ−1

λk+1,θk+1
(w

R,L
k ). (13)

The solvability of equation (13) determines whether the branch
point remains exposed, and then by mapping them one gets a
reasonable image of the fjords.

3. Simulation

The simulation of the boundary of DLA clusters of different
sizes is carried out using the algorithm discussed in section 2.
We set the parameter a = 1

2 , for which the function φλ,θ (w) is
analytically invertible.

At the nth step, θn and λn are determined as follows. θn is
selected from a uniform distribution in the range [0, 2π], and
then λn is computed using equation (9). After determination of
λs and θs and computing exposed branch pointswL,R

k,n , together
with equation (6), the boundary of each cluster is determined.

We generated 2000 clusters of the number of bumps 103 �
N � 5 × 104 and 200 clusters of N = 105. A typical growth
cluster is shown in figure 2. All average quantities which
will be discussed later are taken over the simulated cluster
ensemble.

4. Direct cluster analysis

In this section we do some direct measurements based on
the geometry of clusters obtained from simulation. These
include computation of the fractal dimension of generated
DLA clusters and size dependence of the variance of gyration
radius of the clusters. We find good agreement between
our results and ones obtained from the analytical approach
in [12, 13]. We also measure the density correlation function—
which, to our knowledge, has not been computed yet for the
HL method—and we investigate its dependence on the size of
the cluster. We find that the large-size behavior of the function
corresponds to an expected correlation exponent α which is in
good agreement with the computed fractal dimension.

Figure 2. Boundary of a typical simulated DLA cluster consisting of
N = 105 bumps generated by using the HL algorithm, with a = 1

2 .
The plotted shell is used to study the multiscaling properties of the
boundary in section 5. The width of the shell is magnified by a factor
of 10. Inset: a close-up view of the cluster.

4.1. Scaling of gyration radius for DLA cluster

The fractal dimension Dc of DLA clusters generated by the
HL method has been previously computed from the Laurent
expansion of the conformal map, cf equation (6), equal to Dc =
1.713(3) [12, 13]. The error in the last digit is indicated in
parentheses. This has been obtained from the scaling relation
between the first coefficient of the Laurent series of	n(w) and
the size of the DLA cluster.

Since the first coefficient is proportional to the radius of
the cluster, this motivates us to measure the fractal dimension
directly using the scaling relation between the average gyration
radius Rc

g of the cluster and the number of bumps—or equiva-
lently the cluster size—N , i.e. Rc

g ∼ Nνc , where νc = 1/Dc.
The result is shown in figure 3(a). We find that νc =

0.581(2), in good agreement with previous results.
Another important result pointed out in [14] is the

sharpness of the distribution of the first Laurent coefficient.
It has been shown numerically that the rescaled distribution
width of the squared first Laurent coefficient tends to zero
as N goes to infinity. Here, we check the same idea for
the gyration radius of the clusters. The standard deviation of

the gyration radius is calculated from σ c =
√

〈Rc
g

2〉 − 〈Rc
g〉2,

where 〈·〉 denotes the ensemble average over simulated clusters
of size N . The rescaled σ c as a function of N is plotted in
figure 3(b). As can be seen from this figure the fluctuation
tends to zero for larger cluster size. This suggests that the
rescaled distribution function of the gyration radius of the
clusters tends asymptotically to a δ function.

In order to investigate the asymptotic scaling behavior of
σ c, we proceed in the same way as [8, 10], where the authors
suggest that all of the length scales � in DLA have a scaling
relation with N , like

� ∼ N1/D(a + bN−ϕ) (14)

a single universal exponent ϕ = 0.33(6).

3
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Figure 3. (a) The average gyration radius of clusters Rc
g versus the

number of bumps N . (b) Rescaled standard deviation of gyration
radius σ c/Rc

g versus N . (c) Rescaled standard deviation of gyration
radius (σ c/N1/D , D = 1.711) versus N−ϕ . The error bars are almost
the same size as the symbols.

Our computation shown in figure 3(c) agrees with this
scaling relation but with a different exponent of ϕ = 0.45(5),
indicating that in the limit N → ∞, the fluctuation of
gyration radius has an asymptotic scaling behavior as that of
the gyration radius, and nevertheless the exponent seems not
to be universal (this will be confirmed again in the following
section for other length scales).

4.2. Density correlation function

In this subsection, we compute the two-point correlation
function c(r), defined as

c(r) = 1

V

∑

r′
ρ(r + r′)ρ(r′), (15)

where ρ(r) is the density at position r and the average is taken
over all the points that belong to the cluster. For isotropic
clusters the density correlation depends only on distance r .

For self-similar fractals, c(r) should have the scaling
form of c(r) ∼ r−α , where the exponent α is named co-
dimensionality and is equal to α = d − Dc, where d is the
embedding dimension.

Operationally, we proceed as follows to determine the
function c(r). For each sample in the ensemble of clusters of
a fixed size, we cover the cluster by a two-dimensional square
lattice. Then for each lattice site belonging to the cluster, we
consider an annulus around it with a mean radius of r and
thickness of a lattice spacing. The density of the cluster points
in the annulus is then proportional to the two-point correlation
function at distance r . The average is then taken over both
all lattice points in the cluster and all clusters in the ensemble.
This procedure is repeated for an annulus of different mean
radius.

We find that, for intermediate distances, the function c(r)
exhibits a power-law behavior with an exponent α depending

Figure 4. Two-point density correlation function c(r) for three
different cluster sizes N . The difference in the slope of the solid lines
indicates the size dependence of the correlation exponent α. The
graph for N = 105 is shifted downward by 0.12. Inset: the exponent
α versus 1/N . The solid line is a polynomial fit of order 5, which
yields the asymptotic value of α = 0.29(1). The error bars are
almost the same size as the symbols.

on the cluster size N . This behavior is shown in figure 4 for
three different sizes. The values of the exponent α as a function
of the inverse size of the cluster is depicted in the inset of
figure 4. In order to determine the value of the exponent in
the large-size limit, we fit a polynomial curve to the data. We
find that it extrapolates to α = 0.29(1), whose value is checked
not to be affected by the degree of the fitted polynomial. This
value is in good agreement with the aforementioned relation
α = d − Dc, with Dc ∼ 1.71.

5. Boundary analysis

In this section, we study the scaling properties of various
length scales related to the boundary of DLA clusters produced
by the HL method. We find that the fractal dimension of
the boundary is the same as the DLA cluster, in agreement
with the same conclusion reported in [15], for DLA clusters
produced according to the original definition. We also check
the simple scaling relation equation (14) for various length
scales including the gyration radius Rb

g , maximum radius Rmax

and width Rw of the boundary and their fluctuations. We
find that all these length scales do not obey the scaling form
equation (14) with a single exponent ϕ.

Finally, we check the multiscaling hypothesis for the
boundary of the clusters and we will present evidence pointing
to the existence of such anomalous scaling.

5.1. Scaling of boundary characteristic lengths

Each cluster boundary is divided into segments such that the
i th segment has a length li , and the distance of the midpoint of
the segment from the center of mass is denoted by Ri . During

4



J. Phys.: Condens. Matter 21 (2009) 375110 F Mohammadi et al

Figure 5. Average gyration radius of the boundary Rb
g versus the

average length of the boundary L . Inset: rescaled standard deviation
of the gyration radius (σ b/N1/D , D = 1.711) versus N−ϕ . The error
bars are almost the same size as the symbols.

the calculations, this procedure attributes a weight of li to each
distance Ri and measures the following length scales in a more
delicate manner.

5.1.1. Gyration radius of the boundary, Rb
g. The gyration

radius of the boundary Rb
g is defined by Rb

g =
√

1
L

∑
i li R2

i ,
where L is the total length of the boundary and the sum
runs over all segments on it. The fractal dimension of the
boundary Db can be measured by using the scaling relation
Rb

g ∼ Lνb , where νb = 1/Db. Figure 5 shows the ensemble
average of the gyration radius versus the average length of
the boundary. We find that νb = 0.587(4). This indicates
that, within the statistical errors, a DLA cluster generated
by the HL method and its boundary have the same fractal
dimension, i.e. νc = νb. This result is the same as the
one obtained before for DLA patterns grown according to the
original definition [15]. It may be considered as other evidence
that the patterns generated by the method of iterated conformal
maps proposed by Hastings and Levitov agree statistically with
the ones originally introduced by Witten and Sanders. We have
also checked the scaling of Rb

g with the cluster size and we
found the same behavior as Rc

g with N .
The inset of figure 5 shows the plot of the rescaled

standard deviation of Rb
g , i.e. σ b/N1/Dc against N−ϕ . We find

that ϕ = 0.31(5), in agreement with equation (14).

5.1.2. Maximum radius of the boundary, Rmax. The other
length scales we discuss here are the lengths related to the
maximum value of Ri in each cluster boundary represented by
Rmax in figure 6. We observe from figure 6(a) that the ensemble
average of Rmax scales with size N , with νmax = 0.571(1),
different from the gyration radius exponent. As shown in
figure 6(b), the rescaled Rmax follows the simple scaling
behavior of equation (14), with a quite different exponent of
ϕ = 0.18(5) from the proposed universal value of ϕ = 0.33(6)

Figure 6. (a) The ensemble average of the furthest boundary segment
from the seed Rmax versus the number of bumps N . (b) Rescaled
Rmax (i.e. Rmax/N1/D , D = 1.711) versus N−ϕ . (c) Rescaled
standard deviation of Rmax (i.e. σmax/N1/D , D = 1.711) versus N−ϕ .
The error bars are almost the same size as the symbols.

in [8, 10]. We also checked this simple scaling behavior for
the rescaled standard deviation of Rmax, in agreement with
equation (14) (see figure 6(c)).

5.1.3. Interface width, Rw. According to the analogy
between the DLA growing cluster and non-Euclidean growing
interfaces, the interface width Rw can be defined by Rw =√

1
L

∑
i li(Ri − R̄)2, where the mean radius of the cluster is

R̄ = 1
L

∑
i li Ri .

The growth exponent β can be obtained from the evolution
of the interface width Rw ∼ Nβ . As shown in figure 7(a),
we obtain the growth exponent for DLA clusters generated
by the HL method equal to β = 0.557(2). We checked
the correction to scaling for the exponent, according to
equation (14) represented in figure 7(b), and we conclude that
no correction exists. The fluctuation of the interface width (see
figure 7(c)) exhibits a simple scaling relation of the form of
equation (14), with a correction to scaling exponent of ϕ =
0.58(5). This exponent is very different from those obtained
for hitherto mentioned length scales, and far from its proposed
universal value.

The scaling properties of the interface width apparently
deviates from the simple scaling of equation (14), which has
been proposed in [10] on refuting the multiscaling property
of the DLA cluster. The deviations of these boundary related
length scales from the simple scaling behavior, motivated us
to check an extension of the multiscaling property (previously
applied for the mass of DLA clusters) to the length of the
perimeter of clusters.

5.2. Multiscaling analysis of the boundary of DLA clusters

In this section, we extend the concept of multiscaling,
previously used for the mass of the DLA clusters [16–19]

5
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Figure 7. (a) The average interface width of the boundary of cluster
Rw versus the number of bumps N . (b) Rescaled interface width (i.e.
Rw/N1/D , D = 1.711) versus N−ϕ . (c) Rescaled standard deviation
of the interface width (i.e. σw/N1/D , D = 1.711) versus N−ϕ . The
error bars are almost the same size as the symbols.

Figure 8. Examples of the density profile of the boundary length of
the clusters within a shell of rescaled radius x = r/Rb

g , represented
for four different sizes. Inset: log–log plot of the density profile at a
certain rescaled radius of x = r/Rb

g = 0.8 (the dashed line in the
main figure). The slope of the fitted solid line yields
D(x = 0.8) = 1.67 for N = 100 000. This figure summarizes the
procedure we applied to obtain the functions D(x) in figure 9. The
error bars are almost the same size as the symbols.

to the length of the border of the DLA. Our measurement
for the perimeter of DLA clusters of sizes up to 105

particles (or bumps) reveals the multiscaling behavior of the
border.

For each cluster size, we generated an ensemble of DLA
clusters by using the HL method and the perimeter of each
sample has been determined as described in section 2. We
proceed as follows: for each sample perimeter in the ensemble

Figure 9. Multiscaling fractal dimension D(x) of the boundary for
different cluster sizes as a function of x = r/Rb

g .

of size N and average gyration radius of Rb
g , a shell of radius

r and of width dr (which is about the linear size of a bump) is
drawn (see figure 2 for an illustration). Then we measure the
density profile g(r, Rg) defined as

g(r, Rg) dr = dl, (16)

where dl is the total length of the boundary within the shell of
radius r .

The plot of g(r, Rg) as a function of the rescaled radius
x = r/Rb

g , within 0.1 � x � 2, is shown in figure 8 for
four different sizes. This function has a maximum for distances
around the gyration radius of the cluster. Assuming the scale
invariance of the density profile [17], the multiscaling exponent
D(x) can be defined as

g(r, Rg) = C(x)RD(x)−1
g , (17)

where C(x) is a scaling function. Thus, the multiscaling
exponent can be obtained using the following relation:

D(x) = 1 + ∂ ln g(r, Rg)

∂ ln Rg

∣
∣
∣
∣
x

. (18)

The inset of figure 8 shows the procedure we used to
determine the multiscaling exponent as a function of x . At
each x , the values of the density profile are read from figure 8
for each cluster size of gyration radius Rb

g , and then D(x) is
determined by equation (18).

The whole behavior of D(x) for different size intervals is
shown in figure 9. This shows that the function D(x) does
not tend to a constant value as size increases, and there is a
maximum around x 
 1.2 whose location does not depend on
the size of the cluster. Using the curves of figure 9 (and other
similar curves obtained for other cluster sizes which not shown
in the figure), we also estimated the value of D(x) at each x
in the limit of N → ∞. As shown in figure 9, D(x) is not
constant and varies with x , suggesting a multiscaling behavior.

6
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We therefore conclude that the perimeter of the DLA clusters
generated by the HL method does not have simple scaling, and
thus a set of scaling exponents needs to be described.

6. Conclusion

We studied scaling properties of DLA clusters generated by
the Hastings–Levitov method. First, we calculated the fractal
dimension of the clusters by direct analyzing of the DLA
patterns in agreement with the previous results. We also
computed the two-point correlation function of the mass of the
cluster, and we found that, in the large-size limit, it agrees with
the obtained fractal dimension.

In the second part of the paper, we focused on the border of
the DLA clusters and we investigated their scaling properties.
We found that the fractal dimension of the perimeter is equal to
that of the cluster. We checked the simple scaling behavior for
various length scales including the gyration radius, maximum
radius and the interface width of the boundary, together with
their fluctuations. We found that all of these length scales do
not have a simple scaling with a universal correction to scaling
exponent. The growth exponent has been obtained from the
evolution of the interface width. Finally, we found that the
perimeter of the DLA displays an asymptotic multiscaling
property.
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